|
|
Informationen zum Mediensatz |
Dieser Mediensatz dient der Erarbeitung der allgemeinen regelmäßigen Pyramide.
Der Körper ist nur in der Schrägbild-Teilansicht und der Grundriß-Teilansicht dargestellt.
In Formelsammlungen sind manchmal nur die regelmäßigen Pyramiden mit 3-, 4- und 6-eckiger Grundfläche ausführlich behandelt, so dass der Schüler bei Pyramiden mit anderen n-Ecken als Grundfläche auf eigene Überlegungen angewiesen ist.
Kernüberlegung ist die Tatsache, dass n-Ecke nur für n = 6 in gleichseitige Dreiecke zerlegbar sind und dass der Zentriwinkel (z.B. AMB) durch entsprechendes Teilen des Vollwinkels zu bestimmen ist. Mit Hilfe der Winkelfunktionen bzw. des Satzes des Pythagoras lassen sich die einzelnen Seitenlinien berechnen. Mit der Betrachtung des Umkreises und Inkreises des regelmäßigen n-Ecks lässt sich die allgemeine regelmäßige Pyramide besser "in Griff bekommen".
|
|
Tipps zum Mediensatz: Es ist vorgesehen, dass der Schüler das Arbeitsblatt selbst ausfärbt und ergänzt. Sollten Sie mehr Informationen wünschen, so können Sie die Farbfolie im Graustufen-Modus als Kopiervorlage ausdrucken. |
Tipps zum Whiteboard-Einsatz: Die Mediendarstellung kann im Browser mit der Tastenkombination [Strg] + Plustaste oder Minustaste oder mit [Strg] und dem Mausrad vergrößert oder verkleinert werden, um dann erklärend in die projizierte Folie oder das Arbeitsblatt hinein zu arbeiten. Mit der Software des Smartboards / Aktivboards können Medien-Bereiche (vorerst) abgedeckt werden oder weitere Erklärungen angebracht werden. So lässt sich z.B. auch ein Arbeitsblatt in der Projektion einfärben oder (gemeinsam) ausfüllen. |
Tipps zur OH-Projektion: Wenn Sie von der Kopiervorlage eine s/w-Kopierfolie erstellen, können Sie diese bei der gemeinsamen Erarbeitung vervollständigen. Die Farbfolie setzen Sie dann eventuell erst bei der Zusammenfassung oder Wiederholung ein. Wenn Sie die Farbfolie zur Projektion in eine "gute" Klarsichtfolie stecken, können Sie auch auf dieser Klarsichtfolie Eintragungen zur Projektion "in die Folie" machen, ohne sie zu zerstören. |
|
|
|